Subscribe to our Newsletter

LATEST

NEWS

A greener internet of things with no wires attached

28 December, 2022

Wirelessly powered large-area electronics could enable a cheaper and greener internet of things.
Emerging forms of thin-film device technologies that rely on alternative semiconductor materials, such as printable organics, nanocarbon allotropes and metal oxides, could contribute to a more economically and environmentally sustainable internet of things (IoT), a KAUST-led international team suggests.

The IoT is set to have a major impact on daily life and many industries. It connects and facilitates data exchange between a multitude of smart objects of various shape and size — such as remote-controlled home security systems, self-driving cars equipped with sensors that detect obstacles on the road, and temperature-controlled factory equipment — over the internet and other sensing and communications networks.

This burgeoning hypernetwork is projected to reach trillions of devices by next decade, boosting the number of sensor nodes deployed in its platforms.

Current approaches used to power sensor nodes rely on battery technology, but batteries need regular replacement, which is costly and environmentally harmful over time. Also, the current global production of lithium for battery materials may not keep up with the increasing energy demand from the swelling number of sensors.

Wirelessly powered sensor nodes could help achieve a sustainable IoT by drawing energy from the environment using so-called energy harvesters, such as photovoltaic cells and radio-frequency (RF) energy harvesters, among other technologies. Large-area electronics could be key in enabling these power sources.

Read more at KAUST Discovery.