17 AprPhD DissertationDonor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications
Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications
  • KAUST, Frederico Cruciani, PhD Student , Supervised by Prof. Pierre Beaujuge
  • King Abdullah University of Science and Technology
  • Tuesday, April 17, 2018
  • 11:00 AM - 12:00 PM
  • Al Kindi Building, Bldg 5, Level 5, Room 5209
2018-04-17T11:002018-04-17T12:00Asia/RiyadhDonor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector ApplicationsChemS Student DissertationAl Kindi Building, Bldg 5, Level 5, Room 5209Linda J. Sapolu

Abstract:  Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection.

Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing1, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules.2
Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13%3-5 and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR6-12 and high detectivity values reached so far, compared to the inorganic devices.

Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors.
In the first part, two new wide band gap polymers, used as donor material in BHJ devices, blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT13 and PBDTT_2FT14 have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study15 and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for an average level of transparency of 48%.

In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP based one resulted to be an optimal candidate for future tandem solar cell application, the other one has been applied for a competitive PD.

At last, a comparative study displaying two new acceptor polymers based on modified Isoindigo motifs, named PIID(CO)_2FT and PIID(CO)_BTIA, brought some prospective for future investigations on fullerene free OSC.

1.    Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C., Roll-to-roll fabrication of polymer solar cells. Materials Today 2012, 15 (1), 36-49.
2.    Wen, L.; Chen, Q.; Sun, F.; Song, S.; Jin, L.; Yu, Y., Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting. 2014, 4, 7036.
3.    Chen, S.; Liu, Y.; Zhang, L.; Chow, P. C. Y.; Wang, Z.; Zhang, G.; Ma, W.; Yan, H., A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society 2017, 139 (18), 6298-6301.
4.    Li, X.; Liu, X.; Zhang, W.; Wang, H.-Q.; Fang, J., Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA–ZnO Hybrid Cathode Interlayer. Chemistry of Materials 2017.
5.    Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J., Fine Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-free Tandem Organic Solar Cell. Journal of the American Chemical Society 2017.
6.    Young, M.; Suddard-Bangsund, J.; Patrick, T. J.; Pajares, N.; Traverse, C. J.; Barr, M. C.; Lunt, S. Y.; Lunt, R. R., Organic Heptamethine Salts for Photovoltaics and Detectors with Near-Infrared Photoresponse up to 1600 nm. Advanced Optical Materials 2016, 4 (7), 1028-1033.
7.    Zimmerman, J. D.; Diev, V. V.; Hanson, K.; Lunt, R. R.; Yu, E. K.; Thompson, M. E.; Forrest, S. R., Porphyrin-Tape/C60 Organic Photodetectors with 6.5% External Quantum Efficiency in the Near Infrared. Advanced Materials 2010, 22 (25), 2780-2783.
8.    Perzon, E.; Zhang, F.; Andersson, M.; Mammo, W.; Inganäs, O.; Andersson, M. R., A Conjugated Polymer for Near Infrared Optoelectronic Applications. Advanced Materials 2007, 19 (20), 3308-3311.
9.    Zhang, L.; Yang, T.; Shen, L.; Fang, Y.; Dang, L.; Zhou, N.; Guo, X.; Hong, Z.; Yang, Y.; Wu, H.; Huang, J.; Liang, Y., Toward Highly Sensitive Polymer Photodetectors by Molecular Engineering. Advanced Materials 2015, 27 (41), 6496-6503.
10.    Xu, H.; Li, J.; Leung, B. H. K.; Poon, C. C. Y.; Ong, B. S.; Zhang, Y.; Zhao, N., A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 2013, 5 (23), 11850-11855.
11.    Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A. J., High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 2009, 325 (5948), 1665-1667.
12.    Wu, S.; Xiao, B.; Zhao, B.; He, Z.; Wu, H.; Cao, Y., High Sensitivity Polymer Visible-Near Infrared Photodetectors via an Inverted Device Structure and Manipulation of Injection Barrier Height. Small 2016, 12 (25), 3374-3380.
13.    Wolf, J.; Cruciani, F.; El Labban, A.; Beaujuge, P. M., Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: An Alternative to P3HT. Chemistry of Materials 2015, 27 (12), 4184-4187.
14.    Firdaus, Y.; Maffei, L. P.; Cruciani, F.; Müller, M. A.; Liu, S.; Lopatin, S.; Wehbe, N.; Ndjawa, G. O. N.; Amassian, A.; Laquai, F.; Beaujuge, P. M., Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells. Advanced Energy Materials, 1700834-n/a.
15.    Do, K.; Saleem, Q.; Ravva, M. K.; Cruciani, F.; Kan, Z.; Wolf, J.; Hansen, M. R.; Beaujuge, P. M.; Brédas, J.-L., Impact of Fluorine Substituents on π-Conjugated Polymer Main-Chain Conformations, Packing, and Electronic Couplings. Advanced Materials 2016, 28 (37), 8197-8205.


  • Linda J. Sapolu